Петушок из бисера объемный


Петух из бисера своими руками

Посмотрите мастер-класс и вы узнаете, как сплести петуха из бисера. 

Петух из бисера

Для работы нам понадобится:

  • чешский бисер 10/0 всех цветов радуги: красный, оранжевый, желтый, голубой, синий, фиолетовый и черный;
  • 2 черных бусины диаметром 5-6 мм;-
  • вата/синтепон или полиэтиленовые пакеты для набивки;
  • леска 0,2 мм;
  • соединительное колечко;
  • шнурок для брелока с карабинчиком.

Основная техника плетения таких игрушек – "в крестик". Плетем по схеме, начиная с головы. Тут очень важна внимательность! Точно следите за количеством бисерин и нумерацией каждого шага. На таких схемах звездочкой отмечено начало плетения, а буквами и прерывистым контуром - те бусины, которые уже были в работе и через них нужно пройти.

Голова

Начиная с прямоугольника, плетем по кругу голову.

Плотно набиваем голову наполнителем.

Ищем на схеме места, указанные буквами. К ним приплетаем тело и дополнительные элементы: клюв, бородка, гребень.

Приплетаем тело.

 

Набиваем его, и доплетаем до конца.

Приплетаем клюв, бородку и гребень.

Делаем крылья: плетем крыло и к нему - радужные перышки.

Лапы и хвост

К гребешку прикрепляем соединительное колечко.
Пристегиваем карабинчик с основой для брелока.

Наш петушок готов!
Желаем приятного творчества!
Автор: Надежда Фрол

Комплексное введение в различные типы сверток в глубоком обучении | by Kunlun Bai

Другой пример многоканальных данных - это слои в сверточной нейронной сети. Слой сверточной сети обычно состоит из нескольких каналов (обычно сотен каналов). Каждый канал описывает разные аспекты предыдущего уровня. Как сделать переход между слоями с разной глубиной? Как преобразовать слой с глубиной n в следующий слой с глубиной m ?

Прежде чем описывать процесс, мы хотели бы пояснить несколько терминологий: слои, каналы, карты функций, фильтры и ядра.С иерархической точки зрения концепции слоев и фильтров находятся на одном уровне, а каналы и ядра - на один уровень ниже. Каналы и карты функций - это одно и то же. Слой может иметь несколько каналов (или карт функций): входной слой имеет 3 канала, если входные данные представляют собой изображения RGB. «Канал» обычно используется для описания структуры «слоя». Точно так же «ядро» используется для описания структуры «фильтра».

Разница между «слоем» («фильтром») и «каналом» («ядром»).

Разница между фильтром и ядром немного сложна. Иногда они используются как синонимы, что может создать путаницу. По сути, эти два термина имеют тонкое различие. «Ядро» относится к двумерному массиву весов. Термин «фильтр» относится к трехмерным структурам нескольких ядер, уложенных вместе. Для 2D-фильтра фильтр такой же, как и ядро. Но для 3D-фильтра и большинства сверток в глубоком обучении, фильтр - это набор ядер. Каждое ядро ​​уникально, подчеркивая разные аспекты входного канала .

При использовании этих концепций многоканальная свертка выглядит следующим образом. Каждое ядро ​​применяется к входному каналу предыдущего уровня для создания одного выходного канала. Это процесс, связанный с ядром. Мы повторяем этот процесс для всех ядер, чтобы создать несколько каналов. Затем каждый из этих каналов суммируется, образуя один единственный выходной канал. Следующая иллюстрация должна прояснить процесс.

Здесь входной слой представляет собой матрицу 5 x 5 x 3 с 3 каналами.Фильтр представляет собой матрицу 3 x 3 x 3. Сначала каждое из ядер в фильтре применяется к трем каналам входного слоя по отдельности. Выполняются три свертки, что приводит к 3 каналам размером 3 x 3.

Первый этап двумерной свертки для многоканальных: каждое из ядер в фильтре применяется к трем каналам во входном слое отдельно. Изображение взято из этой ссылки.

Затем эти три канала суммируются (поэлементное сложение), образуя один единственный канал (3 x 3 x 1).Этот канал является результатом свертки входного слоя (матрица 5 x 5 x 3) с использованием фильтра (матрица 3 x 3 x 3).

Второй шаг двумерной свертки для многоканальных: затем эти три канала суммируются (поэлементное сложение), чтобы сформировать один единственный канал. Изображение взято из этой ссылки.

Аналогично, мы можем думать об этом процессе как о перемещении матрицы трехмерного фильтра через входной слой. Обратите внимание, что входной слой и фильтр имеют одинаковую глубину (номер канала = номер ядра). Трехмерный фильтр перемещается только в двух направлениях, по высоте и ширине изображения (поэтому такая операция называется двумерной сверткой, хотя трехмерный фильтр используется для обработки трехмерных объемных данных). На каждой скользящей позиции мы выполняем поэлементное умножение и сложение, в результате чего получается одно число. В примере, показанном ниже, скольжение выполняется в 5 положениях по горизонтали и 5 положениях по вертикали. В целом получается один выходной канал.

Другой способ думать о двумерной свертке: думать о процессе как о перемещении матрицы трехмерного фильтра через входной слой.Обратите внимание, что входной слой и фильтр имеют одинаковую глубину (номер канала = номер ядра). Трехмерный фильтр перемещается только в двух направлениях, по высоте и ширине изображения (поэтому такая операция называется двумерной сверткой, хотя трехмерный фильтр используется для обработки трехмерных объемных данных). На выходе получается однослойная матрица.

Теперь мы можем увидеть, как можно делать переходы между слоями с разной глубиной. Допустим, входной слой имеет каналов Din , и мы хотим, чтобы выходной слой имел каналов Dout .Что нам нужно сделать, так это просто применить фильтры Dout к входному слою. Каждый фильтр имеет ядер Din . Каждый фильтр имеет один выходной канал. После применения фильтров Dout у нас есть каналов Dout , которые затем можно сложить вместе, чтобы сформировать выходной слой.

Стандартная 2D свертка. Отображение одного слоя с глубиной Din на другой слой с глубиной Dout с помощью фильтров Dout .

На последней иллюстрации в предыдущем разделе мы видим, что мы фактически выполняли свертку в трехмерный объем.Но обычно мы все еще называем эту операцию двумерной сверткой в ​​глубоком обучении. Это двухмерная свертка трехмерных объемных данных. Глубина фильтра такая же, как и глубина входного слоя. 3D-фильтр перемещается только в двух направлениях (высота и ширина изображения). Результатом такой операции является 2D-изображение (только с 1 каналом).

Естественно, есть 3D свертки. Они являются обобщением двумерной свертки. Здесь при трехмерной свертке глубина фильтра меньше глубины входного слоя (размер ядра <размер канала).В результате 3D-фильтр может перемещаться во всех 3-х направлениях (высота, ширина, канал изображения) . В каждой позиции поэлементное умножение и сложение дает одно число. Поскольку фильтр скользит в трехмерном пространстве, выходные числа также располагаются в трехмерном пространстве. На выходе получаются трехмерные данные.

В трехмерной свертке трехмерный фильтр может перемещаться во всех трех направлениях (высота, ширина, канал изображения) . В каждой позиции поэлементное умножение и сложение дает одно число.Поскольку фильтр скользит в трехмерном пространстве, выходные числа также располагаются в трехмерном пространстве. На выходе получаются трехмерные данные.

Подобно двумерным сверткам, которые кодируют пространственные отношения объектов в двумерной области, трехмерные свертки могут описывать пространственные отношения объектов в трехмерном пространстве. Такие трехмерные отношения важны для некоторых приложений, таких как трехмерные сегменты / реконструкции биомедицинского воображения, например КТ и МРТ: объекты, такие как кровеносные сосуды, извиваются в трехмерном пространстве.

Поскольку мы говорили об операции по глубине в предыдущем разделе трехмерной свертки, давайте рассмотрим еще одну интересную операцию - свертку 1 x 1.

Вы можете спросить, почему это полезно. Мы просто умножаем число на каждое число во входном слое? Да и Нет. Для слоев с одним каналом операция тривиальна. Здесь мы умножаем каждый элемент на число.

Все становится интересно, если входной слой имеет несколько каналов. На следующем рисунке показано, как свертка 1 x 1 работает для входного слоя с размерами H x W x D.После свертки 1 x 1 с размером фильтра 1 x 1 x D выходной канал имеет размер H x W x 1. Если мы применим N таких сверток 1 x 1, а затем объединим результаты вместе, у нас может быть выходной слой с размером H. x W x N.

Свертка 1 x 1, где размер фильтра 1 x 1 x D.

Изначально свертки 1 x 1 были предложены в документе «Сеть в сети». Затем они широко использовались в статье Google Inception. Несколько преимуществ сверток 1 x 1:

  • Уменьшение размерности для эффективных вычислений
  • Эффективное низкоразмерное встраивание или объединение признаков
  • Повторное применение нелинейности после свертки

Первые два преимущества можно увидеть на изображении выше.После свертки 1 x 1 мы значительно уменьшаем размерность по глубине. Скажем, если исходный вход имеет 200 каналов, свертка 1 x 1 встроит эти каналы (функции) в один канал. Третье преимущество заключается в том, что после свертки 1 x 1 может быть добавлена ​​нелинейная активация, такая как ReLU. Нелинейность позволяет сети изучать более сложные функции.

Эти преимущества были описаны в документе Google Inception как:

«Одна большая проблема с вышеупомянутыми модулями, по крайней мере в этой наивной форме, заключается в том, что даже небольшое количество сверток 5x5 может быть чрезмерно дорогостоящим поверх сверточного слоя. с большим количеством фильтров.

Это приводит ко второй идее предлагаемой архитектуры: разумное применение уменьшения размеров и проекций везде, где в противном случае вычислительные требования слишком сильно увеличились бы. Это основано на успешности внедрения: даже низкоразмерные вложения могут содержать много информации об относительно большом фрагменте изображения ... То есть свертки 1 x 1 используются для вычисления сокращений перед дорогостоящими свертками 3 x 3 и 5 x 5. Помимо использования в качестве редукторов, они также включают использование выпрямленной линейной активации, что делает их двойными.

Один интересный взгляд на свертку 1 x 1 принадлежит Янну Лекуну: «В сверточных сетях нет такого понятия, как« полносвязные слои ». Есть только слои свертки с ядрами свертки 1x1 и полная таблица соединений ».

Теперь мы знаем, как работать с глубиной свертки. Давайте перейдем к разговору о том, как обрабатывать свертку в двух других направлениях (высоте и ширине), а также о важной арифметике свертки.

Вот несколько терминов:

  • Размер ядра: ядро ​​обсуждалось в предыдущем разделе.Размер ядра определяет поле обзора свертки.
  • Шаг: определяет размер шага ядра при перемещении по изображению. Шаг 1 означает, что ядро ​​скользит по изображению пиксель за пикселем. Шаг 2 означает, что ядро ​​скользит по изображению, перемещая 2 пикселя за шаг (то есть пропускает 1 пиксель). Мы можем использовать stride (> = 2) для уменьшения разрешения изображения.
  • Padding: заполнение определяет, как обрабатывается граница изображения. Свертка с заполнением («одинаковое» заполнение в Tensorflow) будет сохранять пространственные выходные размеры равными входному изображению, при необходимости добавляя 0 вокруг входных границ.С другой стороны, свертка без дополнений («действительное» заполнение в Tensorflow) выполняет свертку только для пикселей входного изображения без добавления 0 вокруг входных границ. Размер вывода меньше размера ввода.

На следующем рисунке описана двумерная свертка с размером ядра 3, шагом 1 и заполнением 1.

Есть отличная статья о подробной арифметике («Руководство по арифметике свертки для глубокого обучения»). К нему можно обратиться за подробным описанием и примерами различных комбинаций размера ядра, шага и заполнения.Здесь я просто суммирую результаты для самого общего случая.

Для входного изображения с размером i, размером ядра k, заполнением p и шагом s, выходное изображение из свертки имеет размер o:

Для многих приложений и во многих сетевых архитектурах мы часто хотим сделать преобразования идут в направлении, противоположном обычной свертке, т.е. мы хотели бы выполнить повышающую дискретизацию. Несколько примеров включают в себя создание изображений с высоким разрешением и сопоставление низкоразмерной карты признаков с пространством большой размерности, например, в автокодировщике или семантической сегментации.(В последнем примере семантическая сегментация сначала извлекает карты признаков в кодере, а затем восстанавливает исходный размер изображения в декодере, чтобы он мог классифицировать каждый пиксель в исходном изображении.) схемы интерполяции или создание правил вручную. С другой стороны, современные архитектуры, такие как нейронные сети, позволяют самой сети обучаться правильному преобразованию автоматически, без вмешательства человека. Для этого мы можем использовать транспонированную свертку.

Транспонированная свертка также известна в литературе как деконволюция или свертка с дробным шагом. Однако стоит отметить, что название «деконволюция» менее уместно, поскольку транспонированная свертка не является реальной деконволюцией, как это определено в обработке сигнала / изображения. С технической точки зрения, деконволюция в обработке сигналов обращает операцию свертки. Здесь дело обстоит не так. Из-за этого некоторые авторы категорически против называть транспонированную свертку деконволюцией.Люди называют это деконволюцией в основном из-за простоты. Позже мы увидим, почему называть такую ​​операцию транспонированной сверткой естественно и более уместно.

Всегда можно реализовать транспонированную свертку с прямой сверткой. В качестве примера на изображении ниже мы применяем транспонированную свертку с ядром 3 x 3 к входу 2 x 2, дополненному границей 2 x 2 из нулей с использованием единичных шагов. Выходной сигнал с повышающей дискретизацией имеет размер 4 x 4.

Повышающая дискретизация входа 2 x 2 до выхода 4 x 4.Изображение взято из этой ссылки.

Интересно, что одно и то же входное изображение 2 x 2 можно сопоставить с d

.

Мерная посуда

Мерная посуда

В количественной химии часто необходимо проводить измерения объема с погрешностью порядка 0,1%, одной части на тысячу. Это предполагает использование стеклянной посуды, которая может содержать или обеспечивать объем, известный до нескольких сотых миллилитра, или около нуля.01 мл. Затем можно указать количества, превышающие 10 мл, до четырех значащих цифр. Стеклянная посуда, разработанная для такого уровня точности и точности, стоит дорого и требует некоторого ухода и навыков для получения наилучших результатов. Распространены четыре основных типа мерной посуды: мерный цилиндр, мерная колба, бюретка и пипетка. Они имеют конкретное применение и будут обсуждаться индивидуально. Однако есть некоторые моменты, общие для всех типов. Это касается чистоты и правильного чтения томов.Чистота важна для хороших результатов. На химически чистом стекле образуется однородная водяная пленка без видимых висящих капель. Когда закончите, тщательно промойте стеклянную посуду деионизированной водой. Если у вас есть какие-либо подозрения, вымойте его перед использованием. С некоторыми типами стеклянной посуды можно «кондиционировать» устройство, промывая его несколькими небольшими порциями раствора, отмеряемого перед проведением фактической работы. Это предотвращает разбавление раствора каплями воды и изменение концентрации.Более подробно о том, как это сделать, будет рассказано при обсуждении отдельных предметов из стекла. Вся мерная посуда калибруется с маркировкой, используемой для определения удельного объема жидкости с разной степенью точности. Для точного считывания этого объема нижняя часть изогнутой поверхности жидкости, мениск, должна располагаться на линии разметки желаемого объема. Часто мениск легче увидеть, если положить за аппарат белую бумагу или карточку. Если ваш глаз находится выше или ниже уровня мениска, ваши показания будут неточными из-за явления параллакса.Смотрите на мениск на уровне, перпендикулярном глазу, чтобы избежать этого как источника ошибки.

TC по сравнению с TD

Некоторые мерные изделия из стекла имеют этикетку « TC 20 ° C», что означает « для содержания при 20 ° C». Это означает, что при 20 ° C эта колба будет иметь точно указанный в ней объем. Если бы вам пришлось выливать жидкость, вам нужно было бы вылить из нее каждую каплю, чтобы получить такой объем. В качестве альтернативы, некоторые мерные стеклянные изделия имеют этикетку « TD 20 ° C», что означает « для доставки при 20 ° C»."Это означает, что при 20 ° C именно указанный объем оставит его, когда содержимому позволят вытечь из емкости. Нет необходимости собирать все до последней капли, и, по сути, неточно выдувать последнюю каплю. из объемной пипетки.

Градуированные цилиндры

Большинство студентов знакомы с градуированными цилиндрами, которые используются для измерения и дозирования известных объемов жидкостей. Они изготавливаются с учетом измеренного объема с погрешностью от 0,5 до 1%. Для градуированного цилиндра на 100 мл это будет ошибка 0.От 5 до 1,0 мл. Измерения, выполненные с помощью градуированного цилиндра, могут быть представлены до трех значащих цифр.

Рисунок 1

Мерные колбы

Посмотрите фильм об использовании мерной колбы. Мерная колба, доступная в размерах от 1 мл до 2 л, предназначена для хранения определенного объема жидкости, обычно с допуском в несколько сотых миллилитра, что составляет около 0,1% вместимости колбы. На узкой части горлышка колбы нанесена калибровочная линия.Он заполнен жидкостью, поэтому дно мениска находится на этой гравированной линии. Калибровочная линия специфична для данной колбы; набор колб, предназначенных для хранения одного и того же объема, будет иметь линии в разных положениях.

Рисунок 2

Мерные колбы используются для приготовления растворов с очень точно известной концентрацией. Есть два способа сделать это. Можно начать с твердого растворенного вещества или с концентрированного исходного раствора. При работе с твердым растворенным веществом материал взвешивают с желаемой точностью и аккуратно и полностью переносят в мерную колбу.Если растворенное вещество теряется при переносе, фактическая концентрация полученного раствора будет ниже расчетного значения. Поэтому твердое вещество взвешивают в химическом стакане или другой стеклянной посуде, которую можно промыть растворителем, обычно водой, и переносят в колбу. Добавляется дополнительный растворитель, но его недостаточно для заполнения широкой части колбы. Растворенное вещество растворяется при вращении колбы или при ее закрытии и повторном переворачивании. После растворения растворенного вещества добавляют еще растворитель, чтобы довести объем до отметки на колбе.Последнюю порцию нужно добавлять очень осторожно, по каплям, чтобы нижняя часть мениска оказалась на отметке. Затем колбу закрывают пробкой и несколько раз переворачивают, чтобы полностью перемешать раствор. При разбавлении основного раствора желаемый объем раствора переносится в колбу с помощью пипетки. Затем добавляют растворитель, как описано выше. Очевидно, что концентрация исходного раствора должна быть известна с точностью до такого количества значащих цифр, которое требуется для разбавленного раствора. Также передаваемый объем должен быть известен желаемым числом значащих цифр.Никогда не наполняет мерную колбу растворителем, а затем добавляет растворенное вещество. Это приводит к переполнению колбы, и объем не будет известен точно. Иногда перед добавлением растворенного вещества полезно иметь немного растворителя в колбе. Это хорошая практика при работе с летучими растворенными веществами. Мерные колбы не используются для хранения растворов. После приготовления раствора его переливают в чистую бутылку или стакан с этикеткой. Затем колбу промывают и хорошо ополаскивают. Последние несколько полосканий следует проводить деионизированной водой.

Бюретки

Бюретка представляет собой длинную узкую трубку с краном в основании.Он используется для точного дозирования различных объемов жидкостей или растворов. Он градуируется с шагом 0,1 мл, с отметкой 0,00 мл вверху и отметкой 50,00 мл внизу. Обратите внимание, что отметки не доходят до крана. Таким образом, бюретка фактически вмещает более 50,00 мл раствора. Также доступны бюретки с объемом жидкости 25,00 мл и 10,00 мл.

Рисунок 3

Посмотрите фильм о чистке и кондиционировании бюретки.Для оптимальной точности и предотвращения загрязнения бюретка должна быть чистой. Для проверки чистоты бюретки закройте ее кран и налейте в нее небольшой объем (5-10 мл) деионизированной воды. Держите бюретку под наклоном, почти параллельно поверхности стола. Медленно поверните бюретку и позвольте жидкости покрыть ее внутреннюю поверхность. Затем держите его вертикально; жидкость должна осесть листами на дно бюретки, не оставляя капель на внутренних стенках. Если на стенках образуются капли, вымойте изнутри мыльным раствором и ополосните дистиллированной или деионизированной водой.Повторите тест на чистоту. Непосредственно перед использованием бюретку следует «кондиционировать», чтобы удалить приставшую к внутренним стенкам воду. Добавьте в бюретку ~ 5 мл жидкости, которая будет использоваться. Промойте стенки бюретки, затем слейте жидкость через кран. Повторите со вторым объемом жидкости. Теперь бюретку можно заполнить раствором. Делайте это осторожно и не допускайте попадания пузырьков воздуха в трубку. Вам может понадобиться небольшая воронка. Уровень жидкости может быть выше отметки 0,00 мл. Закрепите заполненную бюретку на месте, если это не было сделано до заполнения; Иногда при наполнении бюретку легче удерживать.Откройте запорный кран и слейте достаточно жидкости, чтобы заполнить кончик бюретки. Имейте под рукой стакан для отработанного раствора для этой и подобных операций. В трубке или на кончике бюретки не должно быть пузырьков. Это приведет к ошибкам в объеме. Если в трубке есть пузырьки, осторожно постучите по бюретке, чтобы освободить их. Используйте кран, чтобы выдавить пузыри из наконечника. Может потребоваться опорожнение и повторное наполнение бюретки. Посмотрите фильм о титровании. Когда бюретка станет чистой и без пузырьков, слейте жидкость до тех пор, пока мениск (дно изогнутой поверхности жидкости) не станет равным нулю или немного ниже него.Марка 00 мл. Нет необходимости точно выравнивать мениск на отметке 0,00 мл, поскольку разница между начальным и конечным объемами является желаемым измерением. Если на кончик бюретки прилипла капля жидкости, удалите ее, осторожно прикоснувшись кончиком к стеклянной поверхности, например к краю стакана для отходов, или протерев ее салфеткой Kimwipe. Объем капли составляет около 0,1 мл, что соответствует размеру деления бюретки. Найдите дно мениска и измерьте уровень жидкости в бюретке с точностью до нуля.01 мл в этот момент. Это потребует небольшой практики. Помните, вы читаете сверху вниз. Запишите это значение как начальный объем. Хотя сложно «читать между строк», помните, что последняя цифра измерения, как ожидается, будет иметь некоторую неопределенность! Одну пятую (1/5) деления (0,02 мл) можно воспроизвести, если мениск находится между отметками калибровки, после небольшой практики. Теперь налейте нужную жидкость. Если вы используете бюретку для измерения заданного количества жидкости, определите, какими должны быть окончательные показания, чтобы получить это количество.Медленно налейте жидкость в приемный сосуд. Помните, что в чистой бюретке вода будет покрывать внутренние стенки и медленно стекать. После закрытия крана зацепиться висит капельку в приемном сосуде. На данный момент это часть измерения, поэтому не кладите его в контейнер для отходов. Подождите несколько секунд, пока мениск стабилизируется, затем считайте и запишите окончательный объем с точностью до 0,01 мл. Разница между начальным и окончательным показаниями - это объем, который вы выделили. При использовании бюретки легче работать с точным дозированным объемом, чем пытаться дозировать точный объем.Помня об этом, планируйте свою работу. Хотя бюретки иногда используются в качестве дозаторов, они гораздо чаще используются в процедурах, называемых титрованием. При титровании стараются максимально точно определить точку эквивалентности. Обычно это связано с первым стойким изменением цвета индикатора. Немного попрактиковавшись, можно дозировать фракции капель (менее 0,1 мл) в сосуд для титрования и воспроизвести результаты с точностью до 0,10 мл или меньше. Посмотрите фильм о чистке бюретки.По окончании использования бюретки слейте оставшуюся жидкость и тщательно очистите ее. Завершите несколько полосканий деионизированной водой, включая запорный кран и наконечник. Если растворенное вещество высыхает в бюретке, его может быть очень сложно удалить. Зажмите бюретку зажимом бюретки вверх дном с открытым краном, чтобы она высохла для следующего лабораторного сеанса.

Пипец

Посмотрите фильм о технике пипетирования. Пипетки предназначены для подачи известного объема жидкости. Их объемы варьируются от менее 1 мл до примерно 100 мл.Есть несколько типов, которые различаются по точности и по типу задачи, для которой они оптимальны.

Рисунок 4

  • Мерные пипетки предназначены для хранения одного определенного объема. Этот тип пипетки представляет собой узкую трубку с «пузырем» в центре, сужающийся конец для подачи жидкости и единственную градуировочную отметку около верха (напротив сужающегося конца) трубки. Объемные пипетки, иногда называемые переносными пипетками, являются наиболее точными пипетками.Обычно они обеспечивают указанный объем ± 0,1%, погрешность в несколько сотых миллилитра.
  • Большинство мерных пипеток имеют маркировку TD (доставить) и опорожняются самотеком. Если капля остается на кончике пипетки, ее осторожно касаются приемного сосуда, чтобы слить оставшуюся жидкость, или протирать салфеткой Kimwipe. Пипетка этого типа , а не , предназначена для вытеснения остаточной жидкости продувкой.
  • Пипетки Мора , также называемые мерными пипетками, представляют собой прямые трубки с градуировкой (обычно на 0.Интервалы 10 мл) и сужающийся конец. Пипетки Мора не предназначены для полного опорожнения. Оператор наполняет их до определенного уровня, а затем отпускает желаемое количество жидкости. Они очень похожи на бюретки и могут использоваться для титрования малых объемов. Однако это требует изрядной практики.
  • Серологические пипетки - это гибрид двух предыдущих типов. Как и пипетки Мора, это прямые трубки с градуировкой. Они могут быть почти такими же точными, как объемные пипетки, и очень удобны.Их можно использовать для дозирования различных объемов. Fo
.

Volumetrics - Руководство блендера

Eevee моделирует объемное рассеяние, оценивая все объемные объекты внутри пирамиды обзора.

Для этого он использует несколько 3D-текстур, которые сильно загружают видеопамять. Размеры текстуры можно настроить с помощью параметров Tile Size и Samples .

Объемы объектов имеют некоторые ограничения.

Start

Начальное расстояние объемного эффекта.

Конец

Конечная дистанция объемного эффекта.

Размер плитки

Управляет качеством объемных эффектов. Меньший размер увеличивает использование и качество видеопамяти. Это размер объемной ячейки в пикселях.

Образцы

Количество образцов для вычисления объемных эффектов. Более высокое количество увеличивает использование и качество видеопамяти. Эти сэмплы распределяются по глубине обзора (ось Z).

Распределение

Смесь между линейным и экспоненциальным распределением выборки.Более высокие значения помещают больше образцов рядом с камерой.

Объемное освещение

Пусть объемное рассеяние рассеивает свет в сцене. Необязательно, если в сцене нет Volume Scatter.

Light Clamping

Фиксирующий световой вклад эффекта объемного рассеяния. Уменьшает мерцание и шум. Установите 0,0, чтобы отключить зажим.

Объемные тени

Примерное поглощение света окружающими объемными объектами.Это делает объемы более непрозрачными для света. Это очень дорогостоящий вариант с ограничениями.

Образцы

Количество образцов для вычисления объемного затенения.

.

Смотрите также